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COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 1 7 ( 3 & 4 ) ,  5 5 3 - 5 7 7  (1992) 

STATIONARY TRANSONIC SOLUTIONS OF 

A ONE-DIMENSIONAL HYDRODYNAMIC 
MODEL FOR SEMICONDUCTORS 

ABSTRACT. We study a hydrodynamic model for semiconductors where the energy equation 
is replaced by a pressur4ensity relationsh~p. We construct artificial viscosity solutions. 
prove BV estimates independent of the viscosi~y coefficient and study the transonic weak 
limrt. We also study the behavior of the limiting solution at the boundary for subsonic data 
We find that a boundary layer can be formed on each side of the boundary and has a condition 
that determines the poss~ble range of disconrinuities for the densiry. 

1. Introduction. 
We are interested in the behavior of solutions for the hydrodynamic model for semi- 

conductors introduced by Blotekjaer [B], which is capable of model hot electron effects 
whch are not accounted for in the classical drift-diffusion model. A discussion about 
these models can be found in [MI, [S] and [MRS]. 

A mathematical analysis for a simplified hydrodynamic model has been introduced by 
Degond and Markowich [Dbll], [DM2]. Some preliminary results have been presented by 
Gardner. Jerome, and Rose [GJR], and also numencal simulations have been cons~dered 
by Fatemi, Jerome an; Csher I: "31. 

In jhlDl] they prove the existence of smooth solutions and a uniqueness result in the 
stationary subsonic one-dimensional model which is characterized by the smallness as- 
sumption on the current flowing through the device. 

In [MD2] the authors prove existence and local uniqueness of smooth solutions of a 
three-dimensional steady state irrotational flow model based on the hydrodynamic equa- 
tions, also under smallness assumptions on the data. which implies subsonic flow of elec- 
trons In the semiconductor dexlce. 

In this paper, we investigate the same simplified one-dimensional hydrodynamic model 
as in [MDl] in which the energy equation is replaced by the assumption that the pressure 
is a given function of the density only. We shall not make any assumption on the smallness 
of the boundary data. 
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5 54 GAMBA 

After appropriate scaling. the one-dimensional time-dependent system in the case of 
one carrier type (e.g. electrons) is 

where p(x. t), u(x, t), @(I. t) denote the electron density, velocity and electrostatic potential 
respectively. p = p(p) is the pressure-density relation which satisfies 

(1.4) p2p'(p) is strictly monotonically increasing from (0, m) onto (0, w) 

The pressure function we use here is p(p)  = Kp', where y > 1 and K > 0. 
Remark 1: What is actually needed of p(p) is convexity and superlinear growth. 
Remark 2: For y = 1 it is necessary to request -O, to be negative. 

Here .r(u,pu) represents the momentum relaxation time which we assume 

The device domain is the x-interval (0.1) and C(x) E Lm(O, 1) is the doping profile. 
The system 1.1 to 1.3 has the boundary conditions 

We consider here the steady state case p, = (pu)( = 0. Then, introducing the current 
density j = pu. the system (1.1)-(1.3) reduces to 

(1.8) J(I) = const 

In [DM11 it is shown that for smooth solutions, j and are related by the current-voltage 
characteristic relationship 

3 2 j w h e r e f ( p , ~ )  = y+ 5 p ' - l  if y > 1 or f ( p , j ) =  - + h p i f ? =  1. 
2P 2p2 

In this case , for which we do not expect the solution to  remain smooth . an appropriate 
boundary data for (1.8)-(1.10) then is 

We consider in this paper the "i-viscosity" equations 

(1.12) ~ ( x )  = const > 0 

(1.13) F(p)z + S ( W .  P) + EPZ. = 0 

(1.14) w. = p - C(x) 
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where 

in the i n t end  I = (0.1) with boundary data 

(1.16) p(0) = po, p(1) = pl and w(0) = d o .  

If 1 < 0 we add negative "5-viscosity". 
IVe shall prove in the following sections that the limit of the E-solution of (1.12)-(1.16) 

converges to a weak solution of the limiting ~roblem as E tends to zero. This solution (p, w) 
of (1.12)-(1.15) for e = 0, will satisfy the classical "entropy condition" for p, namely p 
will be the sum of a Hiilder-112 continuous function plus a monotone increasing function, 
which means the discontinuities of p can be only jumps from smaller to bigger values of p at 
the discontinuity ~o in t s .  These jumps can only occur in transonic regions to be described 
in Section 3. In case the current j < 0. we obtain that the density will be the sum of a 
Holder-112 continuous function plus a monotone decreasing function. 

Finally, we point out that a solution (P,w) of the limiting ~roblem of (1.17-)-(1.16) will 
I - r  

give a solution (p ,@) of (1.8)-(1.11) where @ ( r )  = 1 u1jr)dr + a l .  

In section 2 we shall see that a solution, p, of the €-equations (1.12)-(1.16) is bounded 
above by a constant and below by a positive constant depending only on the boundary 
data, the constant from (1.13-), the exponent y, and on condition (1.5). Also. we shall prove 
that epZ is bounded uniformly in 7 independently of e. Then. by the Leray-Schauder fixed 
point theorem, we see that the E-viscosity problem has a unique solution In C'  '(7). 

In section 3. we use the w i sh ing  viscosity method to prove an existence theorem for a 
weak solution p of the problem (1.12)-(1.16) in the sense of the integral identity 

which is valid for any y 6 C i ( I )  = {;7 6 C 2 ( I )  : supp(Dk9) C I. k = 0.1.2) 
Also we show that. if F(p,) = min F(p),  the function 

p E ( O , r n )  

satisfies the condition that 

(1.19) ?-l(p)(z) i Cx is monotone increasing, 

where C = supS(w, pC). That is ('?f(p)), is a measure bounded below by -C 
r 

The condition (1.19) represents the classical "entropy condition" for the transonic case 
in the sense of Olienik [O], Vol'pert \V], and Kruikov [K]. Sote that with the problem 
being transonic you do not expect p but H(p) to be bounded \ariation. 

Condition (1.19) will imply that weak solution p of (1.17) can be written as a sum of a 
Holder-112 continuous function plus a monotone increasing function. 

In order to obtain this convergence result we show that the function W(pC)(z) is of 
bounded variation in I with total variation norm denoted by Ttj(7-f(pE)). bounded inde- 
pendently of 5. 

Once we know the family {'?f(pC)} is uniformly of bounded mriation, classical complete- 
ness and compactness theorems (Helly's theorem, Kolmogorov compactness condition, see 
IN]) assure us that we can extract a sequence {'?f(pcm)), 5, -+ 0 as  n + cm. that converges 
pointwise in I and in every L P ( I ) ,  1 5 p < co. to  a bounded variation function ' ? f o ( x ) .  
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Further, { H ( p c n ) }  being uniformly bounded. d ( H ( p c m ) )  converges to o('Ho) in L 1 ( I ) ,  for 
any continuous function p. 

Thus. we shall define p ( x )  as 

p ( z )  = lirn H - ' ( H ( ~ ~ "  ) ( I ) )  = H - ' ( H o ) ( x )  
n-P 

and we shall prove that p  is an admissible solution to the problem ( 1 . 1 7 ) - ( 1 . 1 9 ) .  
Finally in Section 4  we discuss in which sense the boundary value is attained. We shall 

see that a boundary layer may be formed for the viscosity solution at both sides of the 
boundary. We prove these results for subsonic boundary data pa and pl (i.e. pa, pl > p , ) .  
On the right side of I  (i.e. at z = 1 )  we obtain lirn p ( x )  5 pl and, if lirn p ( x )  < pl then 

r-1- r - l -  

f ( p i )  5 F ( lim p ( z ) )  and lirn p ( z )  < p,,, (see Theorem 7 ) .  This means that. imposing 
1-1- r-1-  

Dirichlet boundary data on the downstream boundary, we get a condition on lirn ~ ( z )  
7-1 - - .  

which says that either p ( x )  achieves the prescribed value at x  = 1 or a possibie boundary 
layer can be formed which satisfies lirn p ( z )  is a supersonic talue lower than the supersonic 

1 - 1 -  - A 

conjugate value pi  of the subsonic prescribed value p, by F (i.e. F ( p l )  = F ( p ; ) ) ,  as F ( p )  
is a strictly decreasing function of p  for values 0  < p  < p,. 

On the left side of I (i.e. a the upstream boundary point z = 0 )  we prove that 
lirn p ( x )  2 p ,  (see Theorem 8 ) .  This means that a possible boundary layer can be 

r-O+ 
formed which remains in the subsonic region. 

A Physical interpretation of these phenomena, as well as explicit examples are given by 
the author in [GI. 

The proofs of the theorems only make use of lemma 1 1 ,  and it is expected that the same 
kind of results can be obtained for supersonic prescribed data. However. this analysis is 
not included here. 

2. Existence of the viscosity solutions. In order to find bounds for the solution, p. of 
the  e equation (1.13). we need bounds for the solution w  of ( 1 . 1 4 ) .  

We shall soon see that an upper bound for the density p  will depend on a lower bound 
for w. Thus, let G be the solution of 

( 2 . 1 )  SZ  = - C ( z ) ,  with S ( 0 )  5 w o .  

Since C ( z )  is a bounded function then G is a Lipschitz function in ?. In our construction 
the densities p  will always assumed to be non-negative. Let w be the solution of w ( 0 )  = 
~ L ' Q  = W ( 0 )  and w ,  = p  - C ( x )  2 - C ( z ) ,  then 

Similarly. in order to get a positive lower bound for p  independent of E ,  we shall need an 
upper bound for w .  Thus. let B be an upper bound for a l l  pc solutions of the e-equation 
( 1 . 1 3 ) .  We shall see below that B depends only on G .  T,, , J and 7 .  Then. w, 5 B - C ( z )  
in 171 and 

w < Br + G < B + Z L ' ~  + SUP lC(z ) I .  
I 

uniformly in 7, independently of E .  That is, let w  be the solution of w ( 0 )  = wo and 
w ,  = p  - C ( x )  5 B - C ( x ) .  then 
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Boundedness of the density. We denote the c-viscosity equation by 

with 3, w ,  y prescribed. y > 1 and we look at the problem 

E, is a second order quasilinear uniformly elliptic operator in I and L is the ellipticity 
constant. 

We see now that the following classical comparison principle applies to the E, operator. 

Lemma 1. (Comparison principle). is a strict supersolution of E,(u) = 0 (i.e., 
E,(u l )  < 0) and u2 is a subsoJution of EE(uj = 0 (i.e., & ( u z )  > 0) such that uz < ul in 
I ,  then u2 < ul in I .  

Proof. Assume there exists an 30  E I such that u z ( z o )  = u l ( xo ) ,  then ul - u2 has a 
minimum at t o .  This means that V ( u l  - u 2 ) ( t 0 )  = 0 and ( u l  - ~ ~ ) , ~ ( z ~ )  2 0. Then 

i2 where F ' (u )  = -- + y ~ 7 - ' .  Since E,(u2)  > 0. then it follows that at 10, Er(u l ) ( zO)  >_ 0 
u z 

which contradicts that ul is a strict supersolution. 0 

The next lemma is a consequence of the previous comparison principle. It will allow us 
to compare any subsolution of the E, operator with a continuous family of supersolutions 
provided that all supersolutions remain larger than the subsolutions on the boundary and 
that there is at least one supersolution in the family that strictly controls such subsolution. 
This is a classical result widely used with elliptic operators satisfying a comparison principle 
as the one in Lemma 2. We shall write the guidelines of the proof. 

Lemma 2. Let E, be an operator that admits a comparison principle as lemma 1. If 
ul is a subsolutlon of E,(v)  = 0 in I and u' is a continuous family of supersolutions of 
E,(v) = 0 in I, for t  E [O,T] such that uo > ul and uf (ar  > ul)ar for all t E [O,T], then 
u t > u l  i n I fo ra [ l tE [O,T] .  

Proof. Consider .Ae = {t E [O,B] : u' > ul in I ) ,  that is 0 the smallest positive vdue such 
that ut > u l .  do is not empty since t = 0 is in A,g. 

We shall see that .-Is is open and closed in [O, TI. then Ae = [O.T], which completes the 
proof. 

In order to show that Ae is open, we let t E As, then u' - ul is a positive continuous 
function in 1. Let 6 = min(ut - u l )  > 0. then. since the family ut is continuous, there 
exist a po such that /uti' - utl < 6 for all /pj I po. Therefore, uti' > ul for all Ip( 5 po  

Finally, we prove that A0 is closed by showing that 0 E 4 0 .  Let tn  -+ 8, t n  < 8. since the 
family of u' is continuous in t, then. utn -. us ,  u s ( z )  2 u l ( z ) ,  x E I. and tiela, > ullaJ. 
Then, by Lemma 1, ue  > u l  in 7, and therefore B E As. 

Kote: Lemmas 1 and 2 apply to a general equation F ( D Z u ,  Du. u ,  x) = 0, monotone in 
D2u. 

Similar lemmas are obtained changing subsolutions by supersolution and vice versa, and 
also by changing the direction of the inequalities. 



Next. we find a supersolution p for the problem (2.5) that is independent of e and 
depends on w only through its minimum. For this, we write the operator E,, defined in 
(2.4), in the following form 

As before. we think on y .  j and w prescribed and w 2 po  a constant (later we will use 
po = infio" independent of c ) .  K e  try a linear function p = .4x + iM. ji > 0 in I. Then 

j 4-(Az+M)w+:. 
T(P) 

Then, using that r(p) > To and w 2 po where TO and PO are independent of e and p, we 

Therefore. taking A < 0 the right-hand side of the above inequality is bounded by 

M 
Since 7 - 1 > 0. we put A = --, so that p > 0, and M is then taken large enough so 

2 
M 

that this expression becomes negative. Also. since p(0) = M and p(1) = - we impose 
2 

M 
- > rnax{po,p,). Therefore, there exists a B independent of E ,  such that for Ad > B 
2 

Mx 
(2.7) E,(p) < 0. with p = -- + M 2 

and PIar > plar for every E .  
1 fl 

We now apply lemma 2 to the continuous family of pM = -$r + -11. satisfying (2.7). - 
as M moves. Indeed. since each p' solution of E,(pC) = 0 is bounded by a constant C, ,  
then taking Bc = 2C,, we get that pe < pBc, and that pB, is a supersolution if B, > B, 
where B is the fixed constant from (2.7). (If B, < B, then p, < p and there is nothing to 
prove.) 

Thus, our u' family defined 

satisfies that u' are all supersolutions of E,(u) = 0 and also is a continuous family in the 
sense that u' + uto in CO(iO, I]) whenever t ,  + to in [O. B, - B]. 

Then. if p' is a solution of (2.5) then pC < u0 = psc and p'lar 5 uLlar for all t E 
[0, B, - B]. Then by lemma 2, p" < u', t E [0, B, - B]. Particularly 

Hence, we have obtained that 

where B depends only on wo, so, y, j, p, and pl and is independent of E.  
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Next we shall find a subsolution p of the problem (2.5) which is independent of E. By 
analogous lemmas to Lemmas 1 and 2 we shall obtain a lower bound for pE solution of 
problem (2.5) independent of i .  .Again we assume here z ~ .  prescribed and z ~ .  5 11. 

Indeed. we set p = Ii constant. Since we want - 
(2.11) U p )  > I in 0, with plar 5 pClr, 

and using ( l . j ) ,  (2.3), iY needs to satisfy 

This implies 

From the boundary conditions of (2.10). we need X to be smaller than the boundary 
data. Hence we rake 

and 

holds for every s and p independent of F 

This concludes the proof of the following lemma. 

Lemma 3 ( U n i f o r m  boundedness  of  the E-viscosity solutions). I f p C  is a solution 
of the problem E,(p') = 0 in I = (0, l), with pe(0) = po and pE(l)  = p,. where E, is 
defined in (2.4), then. if w 2 po 

(2.11) supp' 5 B for all i 
I 

where B is a constant depending only on po, TO, y ,  j po and pl, and if u? < p1 

inf p' > min po, pl. - 
I { TMPI } for E 

Remark. The bounds do not depend on the behavior of F near zero. only on the behavior 
of F for say p > m i n { p ~ . ~ ~ } .  

Xext. we shall see that i p f  is bounded uniformly in I. independent of 6. where pE is the 
solution of problem (2.5). 

Lemma 4. If p' is a solution of the problem E,(pS) = 0 in I = (0.1). and let C be a 

constant such that I < p, and IIprllr.., lIw/lL.. < C then ~ p :  is uniformly bounded in 7 
C - 

by X(C). 



In particular 

(2.13) I @ + r l  5 D(iu, 1 + 1) in I' = (0, E - ' ) ,  for D = D(C) .  

By (2.11) D 5 C independent of E. Letting t o  E I, we construct the following differen- 
tiable barrier functions 

defined in the i n t e n d  [so, zo +6]. We assume zo+6 E It, if not we do a similar construction 
in [ro - 6. zo]. 

bf ( r )  is a section of a parabola with vertex at C + o(x0) and axis at r = d and second 
-2C 

derivative -. so that b(0) = o(z0). .41so. define 
62 

If zo+6 I' then zo+E 2 E - ' ;  then we do a symmetric construction in [lo-E,xoj (as we 
mentioned above): bf (r)  is a section of a parabola with vertex at C + u(zo) and axis r = 6 

-2C 
and second derivative 7, so that b(0) = u(zo). that is bi(zo - r J  for z E - E.zo], 
and b- ( so  - x) = -bf (2: - I )  also in [zo - 6 . ~ ~ 1 .  

We check that b+ and b-,  defined in (2.14) and (?.IS), are supersolutions and subsolution 
of inequality (2.13) in [zo, zo + 61, respectively. Indeed 

- C b+ = -  4C 
rx 8 2  and I b f /  < - 6 for /z  -lo( < 6 

. Hence, b:= < -D(lbl( + I),  if 6 is chosen small enough. 
Then. b+ is a strict supersolution of inequality (2.13) in the interval !zo.xo + 61 where 

b'jzo) = u(z0) and b+(zo + 6) = C + u(zo) > u(zo + 6). 
.4nalogously, b- is a strict subsolution in the same interval [zo,zo + 61. Then by the 

standard maximum principle applied to the inequality 2.13, 

where 6 is independent of : and zo. 
Assuming u being differentiable, approaching the first derivatives at the point xo from 

the right we get 
2C -- - 2C - b;(zo) 5 o,(ro) 5 b:(zo) = - 

6 ' 

2C 
Hence lo,(zo)i 5 4 where C and E are independent of E and za E 7'. Thus we have 
obtained that 

(2.16) 2C . 
lcp:l 5 -, independent of c and uniformly in 7. 

b 

We finish this section by showing that problem (2.5) is solvable. We use a special case 
of the Leray-Schauder fixed point theorem. A proof for this theorem can be found in [GT] 
Sc. 10.2. 

Theorem. Let T be a compact mapping of a Banach space 23 into itself and suppose there 
exists a constant h1 such that 
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for all z E B and a E [ O , l ]  satisfymg x = uTz. then T has a fixed point. 

In order to apply this theorem. we construct the operator Ta(v) : C o " ( I )  Co , ' ( I ) ,  
for 6 < < p, . pl . the following way: 

Given v E CQ, ' ( I ) .  we solve 

and 

where 

for v > 6 

F(6)  for v < 6. 
and we define p = Ta(v). Then the following theorem holds. 

Theorem 1. Tb, defined as above. has a fixed point. 

Proof. Tg is compact since. from equation (2.19), 

Sow if p = o T s ( a ,  i.e. 

it follows from Lemma 3 and Lemma 4 that 

and 

then 

so that (2.17) is satisfied. 

By estimate (2.20). Ta maps bounded sets of Co%'(P) into bounded sets of C1,'(?),  which 
are precompact (by Arzela-Ascoli's theorem) in C0.'(I) .  

In order to show the continuity of Tb, we let v,, m = 1.2. .  . . . converge to v in 
C O J ( l ) .  Then. since the sequence {Tglim) is precornpact in CQ.'(?). every subsequence 
has a convergent subsequence. Let {T6Dm) be such a convergent subsequence with limit 
p E CQ.'(T) f l  cl3'(f), then, since 

e p , ~  + ( F ' ( V + ) ) ~  t ( S ( w . c f )  = lim { E T ~ G ,  + ~ ~ ( $ 1 ,  i S ( w , $ , ) }  = 0, 
m-m 
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we must have p = T ~ C .  and hence the sequence {Tdcm} converges to p. Hence we apply 
the Leray-Schauder theorem and we get that Th has a fixed point p. that is. from (2.18) 
and (2.19) 

and 

in I, p(0) = po and p(1) = pl. It follows that taking, from (3.2) and (2.3). go = infw and 
I 

p1 = B + wo + suplC(z)l, respectively, and applying Lemma 3 and the remark after it. we 
I 

obtain 

where B depends on po .  TO. ~ . j ,  PO and PI.  

In particular. F 6 ( p + )  = F(p) for any 6 less than the left side of (2.21). then replacing 
in (2.22) and (2.23), we obtain that p solves 

and 

in I, p(0) = po and p(1) = pl and w(0) = wo, which is the original system. 

3. Existence of a weak solution of the limiting problem and entropy condi- 
tion. In order to obtain a convergence result for the E-viscosity solutions. we need to  
prove the function 7f(p6)(z) defined in (1.17) of bounded variation. with a TV-norm 
bounded independently of 5 :  that is the function 7f(pS) = (F(pC)  - F(p,))sign(pZ - p,) 
satisfies TVI(H( pc ))< K .  h' independenr, of E .  

Indeed. the choice of H comes from multiplying the equation (2.4) by a smooth approx- 
imation of sign(p - p,), where p, satisfies 

We denote Ha(p) = sign,(p - p,) the regularization of sign(p - p,). Multiplying the 
equation (2.4) by Hh(pC), we obtain 

where we recall 

(3.2) j2 
1 F1(p)  = -- + ypl-' and S(p)  = -pu + - 

p2 ~ ( ~ 9 3 )  
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Xow. let 

Since F is a smooth function of p and has a minimum at p, then J F ( p )  - F(p,)J 5 
F"(p,)lp - pmjZ - U ( ( p  - P * ) ~ ) .  -41~0 (sign6(p - p,))' is zero for lp - p,l > 6 and 
bounded by 6-' for lp - p, 1 < 6. Then 

I(sign6(p- p m ) ) ' ( F ( ~ )  - F(pm))l 5 F1'(pm)6 + U(62)  = 0 ( 6 ) .  

Therefore, if pt is a C 1 , ' ( I )  function (by theorem 1)  then (H6F ' ) (pE) (x )  is continuous and 
pL is absolutely continuous then (see Natanson [N]) we get the function defined in (3.3) 
satisfies 

(3.41 % ( P ~ ) ( X )  = dr  % ( P ~ ( Z ) ) ~ ( P ' ( Z ) )  = 4zK~6V(~ ' )  + 0 i O l ~ i d x  

where the U ( 6 )  do not depend on p, and U(6)  - 0 as 6  - 0 .  
Combining (3.4) in (3.1) we obtain 

with 

We would like to prove now that 7 f 6 ( p c ) ( z )  is a function of bounded variation with total 
variation norm independent of S and c .  

From classical theory on Lebesgue integral (see Satanson, i?;) 4.IX). since the function 
((H6 F ' ) (pc)  + 0(6 ) )p :  is integrable in I .  then 

(3.7) T h ( W p e ) )  = /' I ( % l ~ ' ) L l d ~  

where Tv~( 'Ha(p ' ) )  denotes the total variation norm of the function X s ( p c ) ( s )  on I. 
Previously, we prove the following lemma. 

Lemma 5. For each fixed E ,  there exists a 6 0  = 6o(i)  such that the last term of (3.5), 
satisfies 

where h' is a constant independent of e and 6,  for every 6 < 60. 
Proof. We integrate in I the equation (3.5) and obtain 

By lemma 3 in Section 2 ,  we have that 

where h' depends on B, wo, po, and pl and independent of E and 6. 
By lemma 4 we know that ip: 5 C, C independent of E ,  then U(6)p: < C for 6 < 6 o ( ~ ) .  
The terms H6(pc(0))  and 'H6(pc( l ) )  are also bounded independently of E and 6,  since 

pC(O) = po and pc ( l )  = pl for all c and F is a continuous function of p. 
Finally. it remains to analyze the term t (P6 (pC) ) ,  evaluated at the points 0 and 1. Using 

lemma 4 once again, and (3.6). we get 
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where C is independent of 6 and E.  

Thus from equation (3 .9 )  we obtain that 

where Ii is a constant independent of E and 6 ,  which comes out from the sum of the upper 
bounds of the remaining terms of the equation (3.9) .  

Now we are in conditions to prove that the total variation of Ha(p') is bounded inde- 
pendently of 6 and c .  

Lemma 6. For eacb fixed e, there exists a = & ( c )  such that 

for 6 < b0 and h' a constant independent of 6 and E where the total variation norm has 
been defined in (3.7). 

Proof. Since lpz.l < C ( e , 6 ) .  X 6 ( p C )  is of bounded total variation in I .  Hence, in order to 
estimate TVI('H6(pC)) it is enough to estimate 

in any number of intervals I,, 0 < n 5 k where p: remains positive or negative. Let I ,  
be such a family, then we take I ,  = ( a , ,  b,) where p: = 0 both at a, and b,; or a0 = 0 or 
bk =1. 

We compute 

Since p: does not change sign in I,, and 'H6(pc)  is a monotone function of pc then 
Xb(pc)  does not change sign in I, either. The integral then commutes with the absolute 
value, and (3.11) becomes 

Integrating equation (3.5)  on I,, Fk becomes bounded by 

Since Hi(p ' ) (p : )2  is non-negative in I .  then by lemma 5, for each fixed E ,  the last term 
can be bounded as 

for 6 < so(€) ,  with K independent of E and 6. 
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The first term in the right hand side of (3.13) is estimated by similar estimates as the 
ones obtained for these terms in lemma 5 ,  so that it is bounded by 

for 6 < 6 0 ( ~ )  and K independent of 5 and 6.  

Finally it remains the terms that contains E ( P b ( p c ) ) , , d s  . Since by (3 .6 )  

and p:(b,) = &(a, )  = 0  for 1  5 n 5 k - 1  then the only terms that remain from the 
second term in the right hand side of (3.13) are 

Thus, by lemma 4, (3.15) is bounded independently of 5, since Ha is bounded by 1  
So, from (3.13), for each fixed E ,  there exists a 60 = & ( E )  such that 

and K independent of 5, 6 and k.  Let P  be any finite partition of I ,  then there exists 
a k > 0, such that P is contained in a union of sets In for 0  5 n 5 k whose endpoints 

are extreme points for pC in I .  Now denote Ik = b In then Ik C Ik+ , ,  and lim Ik = I .  
n=O k-m 

Also from (3.12)  (F6 . r )k  = l ( % ( p C ) ) z l d ~  5 (Fb,c)k+j which is also 

bounded independently of 6. E and k.  
Then. by the B. Levi Theorem (see [N]) 

for 6  < & ( E )  and A' independent of E and 6. The proof of lemma 6 is now complete 

Now we are able to prove the following theorem. 

Theorem 2. Let { p C )  be the solution of the "5-viscosity" problems (2.4), (2.5), and 
F ( p )  = j2p- '  + p7. Then, the functions 

are of bounded variation in I and their total  ariat ti on norm are bounded independently 
of e .  

Proof. For each fixed a. we apply Helly's second theorem (see [N], VIII 57) to the family 
{ ~ 6 ( ~ ' ) 1 6 < 6 , .  

Since U ( p C )  = limUa(pc) uniformly in I .  and, from lemma 6 ,  (3.10), 
6-0 

where K is independent of E and 6 ,  then the total variation of X ( p c )  in I is 

with I< independent of c .  0 
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The next step is to find the limit of the sequence of bounded variation H(pe) functions 
as E tends to zero. 

Theorem 3. Under the above conditions. the family {H(pr)} has a sequence {H(pc")}, 
E ,  -t 0 as n --+ cc that converges pointwise in I and in every LP(I), 1 5 p < co to a 
function 3io(z) of bounded variation. 

Proof. First, the family of functions 3i(pC)(z) = (F(pC) - F(p,))sign(pC - p,)(z) is 
uniformly bounded in I; as, from (2.11) the family {pC} is uniformly bounded in I and F 
is a continuous function of its argument. Also. from theorem 1 we have that the family 
{H(pC)) is uniformly of bounded h a t i o n  in I and TVr(H(pe)) is bounded by a constant 
K. 

Then an application of the Helly's theorems (see [K] VIII 55-7). assure us there exists a 
sequence {H(pcn)}, E ,  -+ 0 as n -t co, such that it converges at every point of I to some 
function 'Ho(z) of finite variation. and 

We have to see now that {H(pCn)} converges to %(z) in LP(I), 1 5 p < X. 

By the Kolmogorov compactness condition theorem (see [N]. XVII §3), since the set 
{H(pc)} is uniformly bounded in I ,  independently of E (i.e., bounded in LP(I), 1 5 p 5 m), 
if Ill-fh(pc) - l-l(pE)llLr(,) tends zero uniformly in E ,  as h -t 0, 1 5 p < cc, where the 
subindex h denotes the (Steklov) average function for 7f(pc) in I, then the family {3i(pc)} 
is precompact in LP, SO that the convergence of the sequence {7f(pcn)(z)} to %(z) is in 
LP(I). 

Indeed, since the family {H(pC)} is bounded uniformly in I ,  independently of e 

Therefore. 

with K independent of E .  Hence. the Kolmogorov compactness conditions are satisfied so 
that the convergence is in LP(I), 1 5 p < cc. The proof of theorem 2 is now complete. 

Next we recall the following result from classical real analysis for which we omit the 
proof. 

Lemma 7. If {gk) is a uniformly bounded family of L1(R) functions such that g k  + g in 
L'(R) and o is a continuous function, then a(gt)  + o(g) in L1(R). 
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We apply lemma 7 in order to be able to define the weak solution we are searching for. 
That is, since the function 3.1(pc(x)) = [F(pC) - F(pm)]sign(pe - p,)(z) is of bounded 
variation in I and 'H is monotone increasing as a function of p' (since F is a convex 
function of pc and F(p,) is the rninlmum value attained by F), then E(z )  admits an 
inverse continuous function. denoted by W1(z) .  such that 

Kow, from theorem 2 and lemma 7 we obtain the desired weak solution. 

Theorem 4. For fixed E > 0, let pC(z) denote a solution of (1.12)-(1.16). Then there 
exists a function p(z) that is a weak solution of(1.12)-(1.14), with E = 0. 

Proof. In view of all previous results, and. from theorem 2 and lemma 7, we obtain that 

(3.18) pLn(x) - 3.1-'(.HO)(z) pointwise and in L'(I) 
n-w 

so we define 

Let us see that p is a weak solution of the limit equation 

with F(p) = -jP-l + p7 and S(p) = -pw + j ~ - ' ( ~ , j ) .  

From (3.18) and (3.19), we observe that p ' n  - p in L1(I) and S(p) is a continuous 
n-m 

function of p, then by lemma 7, S(pCn)  - S(p) in L1; also. as F is a continuous 
n-m 

function of p, F(pe") - F(p) in L1(I). 
n - m  

3ow let p t Ci(I) multiply equation (1.13) and integrate by parts, then 

Since pCm are uniformly bounded in I (lemma 3) and q,, is also bounded in I then the 

term E ,  1 pc"7=. converges to zero as n - a. Then taking limit as n -+ m in (3.21). we 

obtain that (3.20) is satisfied. 

Before going into the "entropy condition" (1.19), we shall observe some easy conse- 
quences of the last theorems and lemma 7. 

The first one is a trivial obserntion consequence of theorem 3 and lemma 7. 

Lemma 8. Let p(z) be the weak solution of (1.12)-(1.14) for E = 0, obtained as a limit 
of pc" solutions of (1.12)-(1.16), E ,  4 0, as n + m. Then the function d&ed 

is of bounded variation. 

Proof. Since pc- - p and F(pc-) - F(p) both in L1(I) then 'H(p)(z) defined as 
n-m n-CQ 

in (3.22) is a continuous function of its argument p, and. by lemma 7, 'H(ps") - N(p) 
n-& 

in L1( I ) .  



Now. by Helly's theorem, since %(pen) is uniformly bounded and with uniformly bounded 
total variation, then 7- l (pe - ) ( z )  -+ X ( p ) ( z )  pointwise in I  and H ( p ) ( x )  has its total varia- 
tion bounded. 

The next result will give some information about the regularity of the weak solution p, 
when the values of p  are away from the transonic zone, that is for d u e s  of p ( z )  away from 
p,. The next theorem is an application of the differentiation theorem in L'(I ) .  

Theorem 5. Let p(x) be the weak solution of (1.12)-(1.14) for E = 0. obtained as limit 
of the€,-viscosity solutions pcn of (1.12)-(1.16) as n + m. Then. the function F ( p ) ( z )  = 
jp - ' (x )  + p7(2) is a Lipschitz function in I. 

Proof. Let +h be an h-regularization of the charactenstic function of the interval [a,  b], 
such that ph is an average in the intervals ( a  - h, a  $ h )  and (b  - h ,  b + h), then if p  is the 
weak solution obtained in theorem 3  of problem (1.12)-(1.14) with E = 0, then from (3.20) 

b+ h 

(3.23)  - (la+* + F ( ~ ) ( ~ h ) ~  + / s ( p ) p h .  
a-h  b - h  a - h  

C  
Since 0 5 (vI,)= < L + C z  in ( a -  h , a +  h) and - 

h 
( b  - h. b  + h), for C 1  and C2 constants, (3.23)  implies that 

In view of lemma 3. let B = supp. Since F  is a continuous function of p  and, by Lemma 
I 

7, we have that F ( p )  E L 1 ( I ) .  then F ( p )  converges a.e. to F ( p ( a ) )  as h -+ 0. and 

analogously for F ( p ( b ) ) .  
Taking limit in (3.24)  as h goes to zero, since supF(p) 5 F ( B ) ,  we obtain that 

I 

Therefore, the function F ( p ( 2 ) )  is Lipschitz in I .  

The result from Theorem 5 can be generalized to any convex function F ( p )  provided 
the solution p' of E,(p) = 0 for the corresponding F  are bounded. 

An immediate conclusion of Theorem 5 is the following: Since F ( p )  is a decreasing 
function of p  for values of p less than p, and an increasing function of p  for values of p  
bigger than m,  then in any closed subinterval I' of I  such that p ( t )  < p,, x  E I' (or 
F ( p ( r ) )  > p,, x  E I t ) ,  F ( p ) ( t )  is a Lipschitz function of z in I ! .  so it admits an inverse 
defined on F ( I 1 ) .  Hence p. the weak solution of (1.12)-(1.14) with c = 0, defined in (3.19), 
coincides with F - l ( F ( p ( r ) ) )  in 1', which is a Lipschitz continuous in I f .  So we set this 
result as a lemma. 

Lemma 9. The weak soh tion defined in (3.19) of problem (1.12)-(1.14) for E = 0 satisfies 
a) ~ ( r )  is a Lipschitz continuous function in I f ,  a closed subinterval of I ,  where p ( z )  < p, 

for every r  E I f .  The set of x  E 1', such that p(z )  < p,, indicates that I' is inside the 
supersonic region of equation (3.20). 
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b) p(x) is a Lipschitz continuous function in I ' ,  a closed subinterval of I, where p(x) > p, 
for every x E If. The set of I E 1', such that p(x) > p, indicates that I' is inside a 
subsonic region of equation (3.20). 

c) p(z) can have oscillations and discontinuities only at subsets I' C I such that p takes 
values above and below p, in subsets of I' with positive measure. This indicates that 
I' is a transonic regon of equation (3.20). 

Our final result in section 3 is the deriwtion of the "entropy condition" stated in (1.19). 

Theorem 6 (Entropy Condition). Let p be the weak solution defined in (3.19) of 
problem (1.12)-(1.14) for E = 0, then there is a constant C > 0 such that the function 
H ( p ) ( x ) ,  defined in (3.22), satisfies 

in the sense of the distributions. 

Proof. Let p E C:(I) any positive test function. Multiply (3.5) by is and integrate . then 

Let C = supS(pC). C = C(B). where B = suppc for every E .  By lemma 3, B is 
I I 

independent of E and so is C. Now, any y regular with compact support in I, satisfies 

We subtract (3.27) from (3.26) and obtain 

First, we look at A , .  Since lA1 1 5 O(6)c-'K where K depends only on the uniform 
bound of the family {~p:} and the function 9. Then A1 -+ 0 uniformly in I as 6 -t 0 for 
each E fixed. 

Second, we look at d3. Also, since P6(pZ) = / H6(pZ), then P6(pE) is uniformly bounded 
J I 

in I by a constant independent of E and 6. so that A2 = O~(E) which converges uniformly 
to zero as  E and 6 goes to zero. 

Third, -43 = E Hi(pc)(p:)2y > 0, since Hi 2 0 and q 2 0, independently of E and 6. /I 
Finally, since (H6S)(pE)y < Cy in I we have obtained that (3.28) becomes 

Now, taking the limit first as 6 -+ 0, then as E -+ 0. we obtain that 
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for any positive test function 9, where p  is the limit weak solution defined in (3.19). 
Hence, (3.29) says that 

in the sense of the distributions, so that ( X ( p ) ) ,  is a measure bounded below by -C.  
Particularly since X ( p ) ( z )  is an L 1 ( I )  function then & r )  = H ( p ( x ) )  + Cz is a monotone 
increasing function of x  in I .  Then, % ( p ( z ) )  is a Lipschitz function plus a monotone 
increasing function. 

Finally. we note that since F ( p )  behaves as a quadratic function of p in a neighborhood 
of p,, then we can say that 

where 6(z) is monotone increasing, that is, p, is a Holder-; continuous function plus a 
monotone increasing function with at most a countable set of discontinuities. Also, p  is not 
necessarily of bounded variation in a neighborhood of the points z, such that p ( z ,  ) = p, 
(the neighborhood of such points are transonic regions). Thus, we set this remark as the 
following lemma which complements Lemma 9.  

Lemma 10. Let p  be the weak solution defined in (3.19) of problem (1.12)-(1.14) for 
E = 0. Then, 

~ ( z )  = G ( x )  + 4 x 1  

where G ( z )  E c ' / ~ ( I )  and a( z )  is monotone increasing in I  with at most a countable 
number of discontinuities. 

4. Behavior of t h e  solution near the  boundary. 
We consider the general form of the E-viscosity equation and boundary value problem 

as in (2 .5 ) .  Thus, let pC be a solution of 

where 

where F is the convex function defined in (1.15) and S ( p )  = S ( w , p )  also from (1.15). 
In section 2 we proved that the solutions pC of (4.1)  and ~ p :  are uniformly bounded in 

I independently of e ,  and that problem (4.1) is then solvable for every E .  

In section 3 we proved that the function 'H(pC)(x) = ( F ( p )  - F(p,))sign(p - p,)(z)  
has uniform total variation where F(p , )  = min F ( p )  and 'H(pC) is a monotone function 

pE(0,m) 
of the variable pe. Then a weak solution of problem (4.1)  for E = 0 was constructed by 
taking ~ ( x )  = H-'('Ho(x))  where 'H(pc(s)) - N o ( = )  pointwise in 7 and in every LP(I) ,  

e -0 

1 5 p < co (see theorems 3 and 4 ) .  
In lemma 8 we proved that for this weak solution p, the function defined by 'H(p) (z )  = 

( F ( p )  - F ( p , ) )  sign(p -p , ) (x ) ,  which is strictly increasing as a function of p, has bounded 
total variation as a function of z ,  and in theorem 5  we proved that F ( p ) ( z )  is a Lipschitz 
function in 7. 

The following lemmas and theorems will not depend on the particular form of F ( p )  as 
long as we have that F ( p )  is strictly convex with a minimum value attained at p, and 
that we have been able to solve (4.1) for this corresponding F(p) .  
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From the regularity obtained for the weak solution p (lemmas 9 and lo), p has lateral 
limits at every point o f f ,  so we state and prove the following lemma. 

Lemma 11. Let p be the weak solution of problem (4.1) for E = 0: defined as in (3.19), 
and let p; = lim p(z)(resp. = lim p(z)). Then, for every 6 > 0, there exist a a6 that 

r-1- .-Of 
depends on 6, such that, for any o < us fixed. there exist an € 0  = E ~ ( U ) ,  such that the 
follow in^ holds: u 

For each e 9 ra there is x:  = zl (I) E (1 - a, 1 - i) (resp zg = l o ( € )  E (f , o)) , 
where the pair (e, I; ) (resp. (e, 2:)) satisfies 

and either 

or we can choose the sign of p: at zf (resp. at  zi) ,  i.e. 

(4.4) p:(z;) > 0 or p:(z;) < 0 (resp. at  2:). 

Proof. We shall write the proof for the limit from the left toward the right endpoint of I 
which is x = 1, unless we state o t h e s e .  

Since 7f is a Lipschitz function in I then E(p( t ) )  + 'H(p;) as z + 1-, then for a given 
6 > 0 there exists a 0 6  = u(6)  such that 

uniformly in [I - o, 11, for every o < ob. By theorem 3 in section 2, the family {X(pc)} 
converges pointwise in I to X(p) as E -+ 0, then for and ez positive, there exist two 

points u (I - u, 1 - o )  a n  v (1 - 

and 

Since the solution p can be written as p(x) = X-'(X(p)) = G(z) + a ( s )  where G(I) E 

i 1 C1f2(1) and a ( r )  1s monotone mncxeasng (see lemma lo), then, assurmng that u and v are 
points of continwty of p, 

/ I  w t h  C ~ndependent of E and 6 Slnce pc 1s a CIJ(l) for every E,  then for any E 5 € 0 ,  by 
1 the mean value theorem, there elasts an Zc = Z(e) and u 5 Ze 5 v such that 
I : 

1 4 
lp:(K)I 5 u_v lpC(u) - p'(v)I 5 -C61i2, 

and C is independent of E and 6 Xow, d the pair (6, Z,) satisfies 
I 
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then we choose 2;  = Fc and then condition (4.2) and (4.3) are satisfied. 
For those pairs ( E ,  Z; ) such that (4.7) do not hold, we use the fact that X(pc(x))  is a 

smooth function in 7, for each fixed E .  

Let E be such that for the pair ( E , : ~ )  

then combining (4.5), (4.6), and (4.8) we can say that 

u 
w i t h l - a < u < Z c < v < l - - .  

2 
Inequality (4.9) indicates that U ( p c ( z ) )  has increased from the point u to the point 5. 

and decreased from the point 5 to z., and (4.10) means the opposite variation. Therefore 
we can choose points s'" and ~ ' 5 ~  between u and v such that one of the following holds 

either a) 

(4.11) 
6 

' ~ ( ~ ' ( x * " ) ) ,  2 0 and 7f(pC(z'")) - 'H(pc(u)) < 4 

and 

6 
(4.12) U ( ~ ' ( Z * . ~ ) ) ~  < 0 and ~ ( p ' ( z ' * ~ ) )  - U ( p C ( v ) )  < 4 

and 

(4.14) 
6 

X ( p ' ( t * ~ ~ ) ) ~  >-- 0 and 'H (pL(u) )  - U ( p C ( t * 3 2 ) )  < 4 

with s*~ '  and z*" depending on E .  

Since 'H(pC) is monotone in pC, then U-' is also monotone and hence we obtain. com- 
bining (4.11)-(4.14) with (4.5)-(4.6) we can find points z',' and z*q2 with 1 - a < s', ' ,  

z*!' 5 1 - 5 which satisfy 
2 

6 
IH(pc(z*~ ' )  - 'H(p;) l  < 5, i = 1,2 

and only one of the two following possibilities 

(a) p:(zg<' )  2 0 and p : ( ~ * , ~ )  5 0 

Therefore for the E'S, such that (4.7) is not satisfied. We can choose XI either z',' or z*J 
such that we can select the sign of the derivative of p' at the point x i ,  and the inequality 
(4.7) is satisfied, i.e. 
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with 1 - o 5 z ;  5 1 - and we can choose either p: (z f )  positive or negative, so that 
2 

(4.2) and (4.4) are satisfied, and thus the proof of the lemma is completed. 

Remark. The proof of this lemma can be identically repeated for the left endpoint of I 
(i.e., z  = 0), in analogy. 

Behavior a t  the right endpoint of I. Let pl be the value prescribed at the right 
endpoint of I, i.e. pl = p c ( l )  for all solutions pC of problem (4.1). 

The use of Lemma 11 will enable us to prove the following theorem. 

Theorem 7. Let us assume that pl is a subsonic data (ie. pl > p,) and let p; = 
lim p(x), where p(z)  is the weak solution of problem (4.1) for E = 0, then p; 5 p l .  

z-1- 

Moreover, if p; < p l ,  then p; is a supersonic value (ie. p; < p,) such that F(p1) 5 
F(p i - ) .  

This last statement indicates that a boundary layer may form for the E-viscosity solu- 
tions. 

Proof. We first note that if p; < p l :  then since 31 is monotone in p, 'K(p;) < H ( p l ) .  So 
we let 

For any given 6, 0 < 6 < 60 we apply lemma 11 , then we have that there exists a aa, 
independent of E ,  such that for any arbitrary o < 0 6  there exists EO = E ~ ( U )  such that for 

every E _< €0, there is a point z ;  E 1 a, 1 - - whch satisfies ( -  3 '  

and either 

or we choose 

Next, for the same E of the pair ( E , z ; ) ,  from (4.6) there is a v  E 

that I?i(pC(v)) - ?i(p;)l < 614, for every E 5 €0. Combining this estimate with (4.16) 

6 
31(pl) - 'H (pe(v ) )  > 46 - - = C6 > 0 for every E 5 € 0 .  

4 

Since H is strictly monotone increasing also it is 31-' then this last inequality implies 

p1 > H-' (C6 + X ( p c ( v ) ) )  then p1 > pc(v). v  E , for every E 5 E D .  Since 

p 6 ( z )  converges to pl as z  4 1- then pc must attain the value pl at a point in ( v ,  1). 
Xow let i, be the first point from the left end of ( v ,  1) such that pc(?,) = p, , then, since 
p1 > pc(v) ,  pC increases in a neighborhood of LC. Therefore, 
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Next, we denote 

(4.21) b, = Z, and a, = x; 

and we integrate the equation (4.1.b) E,(pc) = 0 between a, and b,, and we obtain that 

(4.22) F(pC(bc)) - F(pC(a,)) + (b, - a,)S(w,pz) = e(p:(a,) - p:(b,)), 

1 
where S ( w ,  pe) = - S(w,pc)dx a n d 0  5 b,-a, 5 1-a, < o: then0 < b,-a, < 
a ,  and thus, we can estimate the third term of (4.22) as 

and S(w, pc) being smooth and uniformly bounded by inf w and the uniform bound of p' 
I 

(see lemma 3), we get (S(w,pc)l uniformly bounded by a constant K independently on E .  

C's/2 
Combining(4.18), (4.19), (4.20), and (4.21) we get that  p:(b,) 2 0 and Ip:(a,)l < - 

o 
or &(a,) 5 0. Also, we have that F(pc(bc)) = F(pl) .  

Therefore, replacing in (4.22) 

and from (4.17) IF(pc(a,)) - F(P;)~,  which is bounded by I'H(pc(ac)) - H(p;)l, is less 
than 6. 

Hence. 

where K and C are independent of E , 6 and o, and 6 and a are arbitray. Letting &st E 

go to  zero, we obtain 
F(PI )  - F(P;) I o K  + 6, 

where o and 6 are arbi traq.  Therefore 

Since F is strictly monotone increasing for values of p 2 p,, then since we assume p; < pl 
and pl > p, then p; must be less than or equal to  p,. It remains to prore that p; cannot 
be bigger than pl. In order to  obtain this result we use Lemma 11 in the following form: 

1 
Assume p; > pl, and again we let 6 0  = -'H(p;) - 'H(pl) > 0. Then, as  we did in i) for 

4 
any 0 < 6 5 60 and , we find there is a us, such that  for every arbitrary a < 0 6 ,  there exist 

€0 = cO(u), such that  for every E 5 €0 there is a point zf in 1 - a ,  1 - - which satisfies ( " 2 > 



S O L U T I O N S  O F  HYDRODYNAMIC MODEL FOR SEMICONDUCTORS 

or we choose 
~ 3 2 ; )  2 0  

With a similar argument we can now find a 5 .  in ( v ,  11 such that p C ( 2 , )  = p c ( l )  = P I  
but with the property that p i ( 5 , )  5 0 (this property is valid because we have assumed 
60 > 0 ) .  Then again choosing b, = 4, and a, = z; and repeating the computation from 
( 4 . 2 2 )  and ( 4 . 2 4 )  we get 

for every e < e o ( a ) ,  with K ,  C, independent of c,6 and a .  First, letting E go to zero, since 
o and 6 are arbitrary, then we get 

Therefore, if p; > pl with pl > p,, since F  is strictly monotone increasing in ( p , ,  w):  
then F ( p 1 )  < F ( p ; )  which contradicts ( 4 . 2 7 ) .  This concludes that lim p ( z )  5 p l ,  and if 

1-1- 

lim p ( z )  < pl then 
r-1- 

Theorem 7  has been proved. 

Behavior a t  t h e  left endpoint of I. 

Theorem 8. Let us assume that p, is a subsonic data (i.e. po > p m )  and let p$ = 
lim p ( z ) ,  where p ( z )  is the weak solution of problem (1.1) for E = 0, then p$ 2 p,. 

r-O+ 

Proof. We again use Lemma I1 for the correspondmg form at the left endpoint of I, z = 0. 
This proof is very similar to the proof of the first part of Theorem 7 .  However, we shall 
write it again. 

Let us assume p z  < p,, then we set 

Then for every 0 < 6 < 60 , there exists a 0 8  such that for every o < 06, there exist an 
EO = EO(O) such that for each e 5 €0 there is a point 3: E o which satisfies 6 ) 

and either 
C 

Ip:(z;) l  < -s'lZ 
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Next, for the same e of the pair (e,zE), £rom (4.5), there is a u E (:, io) such that 

b 
J'H(pC(u)) - ?f(pz)J < - for every e 5 EO. Then, combining this estimate with (4.29) we 

4 ? 

b 
have that - 'H(pc(u))  > -- + 86 = c6 > 0. Since 'H is strictly monotone increasing, it is 

4 
also 'H-'. The last inequality implies (p, > 31-'(c& + 'H(pL(u)) )  then 

Since p c ( z )  converges to po as x -+ 0- and po > p,, then p' must attain the value p, 
at a point in (0. u ) .  Now let 2,  be the first point from the right end of ( 0 , u )  such that 
pc(2,) = p,, so that by (4.30) pc decreases in a neighborhood of i,, and then pi(5, )  < 0. 

Next we denote 
b, = z: and a, = 2,  

and we integrate the equation (4.1) E,(pE) = 0 between a, and b,. We obtain a similar 
expression to (4.22) 

where IS(w, pc)l 5 K and 0 5 b,-a, $ u-a, 5 o, and F(pC(a,) )  = F(p,) and p:(a,) < 0. 
C 

Since p:(b,) 2 0 or p:(b,) 5 -6''' we get that 

By (4.12) of lemma 11 (corresponding at the left side) we have that 

so that 
C 

F ( P : )  -F(p,)  < OK + ~ - - 6 ~ / ~  o + 6  

for every E 5 e0(u )  with K and C independent of E , 6 and o, and. 6 and a arbitrary. 
Therefore, taking first limit as E goes to zero. 

which contradicts the fact that p$ < p, and that F is strictly decreasing in (0, p,) and 
F ( p m )  = ( x i , F ( p ) .  Theorem 8 has been proved. 
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